Профессиональный страховой портал «Страхование сегодня»
Профессиональный страховой портал «Страхование сегодня»
Google+ Facebook Вконтакте Twitter Telegram
Второй Евразийский Актуарный Конгресс Премия в области финансов «Финансовая элита России»
    Этот деньПортал – ПомощьМИГ – КоммуникацииОбучениеПоискСамое новое (!) mig@insur-info.ru. Страхование сегодня Сделать «Страхование сегодня» стартовой страницей «Страхование сегодня». Добавить в избранное   
Самое новое
Идет обсуждение
Пресса
Страховые новости
Прямая речь
Интервью
Мнения
В гостях у компании
Анализ
Прогноз
Реплики
Репортажи
Рубрики
Эксперты
Голос рынка
Аналитика
Термины
За рубежом
История страхования
Посредники
Автострахование
Страхование жизни
Авиакосмическое
Агрострахование
Перестрахование
Подписка
Календарь
Этот день
Страховые реестры
Динамика рынка
Состояние лицензий
Знак качества
Страховые рейтинги
Фотографии
Компании
Визитки
Пресс-релизы


II Евразийский Актуарный Конгресс
Премия в области финансов «Финансовая элита России»
Барьер-2024. Противодействие страховому мошенничеству – успехи и достижения, проблемы и вызовы


Top.Mail.Ru

Компании и организации

Китай / China
Xinmei Mutual Life Insurance
Регистрационный номер: 0
3 ноября 2024 г.  |  Пресса
Хабр
Страховые компании активно внедряют крупные языковые модели (LLM) для повышения эффективности и персонализации. Это включает как общие задачи (анализ данных, автоматизация), так и специализированные — интерактивное обучение агентов, улучшение клиентского сервиса. Внедрение модели идет через две стратегии: приватное развертывание, которое повышает безопасность, и API-интеграции для гибкости. Однако развитие связано с высокой стоимостью и вызовами по защите данных, что требует стандартов для устойчивого применения AI в страховании. В данной статье я предлагаю рассмотреть, каким образом страховые компании Китая решают свои внутренние потребности и каких конкретных результатов они достигают, представляя взгляд со стороны.
3 августа 2017 г.  |  Пресса
МК в Казахстане
Disclaimer (ограничение ответственности)

Данные получены из открытых источников, пресс-служб компаний и организаций. Редакция портала не несет ответственности за возможные ошибки или неточности в приведенных данных и всячески приветствует указания на такие случаи с сообщением более точной, корректной или актуальной информации.